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ABSTRACT

Our study investigates the steady secondary momentum and enthalpy streaming that occurs in
the pulse tube refrigerator.  The linearized mass, momentum and energy conservation laws that
are described by N. Rott1 are applied to a pulse tube, with the phase and amplitude of the axial
velocity boundary conditions treated as independent parameters.  Heat transfer between the gas
and the tube wall is included.  Heat transfer is shown to affect enthalpy flow by modifying the
dynamic temperature amplitude and the temperature phase angle of the gas.  We also calculate
the steady mass flow circulation due to Reynolds stresses in the pulse tube.  The length scale of
the circulation is shown to be of the order of the tube length.  Mass flow circulation is a loss
mechanism because it results in a direct convection of enthalpy between the cold and hot ends.

INTRODUCTION

The one-dimensional enthalpy flow model for the pulse tube refrigerator (PTR) has been
extensively developed2.  It is applicable in the limit of negligible heat transfer between the gas
and the tube wall.  For a system with transport in the axial z-direction parallel to the tube length,
the steady enthalpy flow is calculated from the time-averaged quantity <H> = <ṁ CpTd> where
the quantities in brackets are time averages.  The time-averaged enthalpy flow is <H>, the heat
capacity at constant pressure is Cp, the mass flow is ṁ , and the dynamic temperature is Td.
Though the one-dimensional enthalpy flow model has been very successful, it does not include
the effects of momentum and thermal diffusion.

Including momentum and thermal diffusion into the analysis will provide a greater understanding
of the flow physics within a pulse tube.  With thermal diffusion, one can examine how heat
transfer between the gas and the tube wall affects enthalpy flow.  One can then determine
whether it helps or hinders.  With momentum diffusion, one can understand how the Reynolds
stresses in the viscous layer produce the forces that drive steady momentum streaming3.
Momentum streaming is important for the PTR because it is a loss mechanism, i.e., it results in
steady mass flow circulation between the cold and warm ends.



The present work addresses how thermal and momentum diffusion affect enthalpy flow and
momentum streaming in the PTR.  A two-dimensional axisymetric model – based on the mass,
momentum and energy conservation laws – is the foundation of this analysis.  The model is used
to understand how heat transfer between the gas and the tube wall changes the temperature
amplitude and phase angle of the gas.  The changes are then assessed in terms of their impact on
enthalpy flow.  Steady momentum streaming is then addressed.  The resulting analysis gives a
general understanding of the transport mechanisms within the pulse tube.

SCALING PARAMETERS

The model is based upon the set of linearized conservation equations examined by Rott1 and
used by Swift4 and by Merkli and Thomann5 to describe thermoacoustic effects.  The equations
are recast in dimensionless form and applied to a cylindrical tube geometry with boundary
conditions representative of the PTR.  The basic state problem is then solved for the case of
negligible axial temperature gradient.  A complete description of the governing equations and the
solution method would leave little room for the main purpose of this paper – that of showing
calculated results.  In the Appendix we give a brief description of the equations.  For full details,
the reader is referred to elsewhere6.  In this section we define the system and outline the problem.

The axisymetric system under study is shown in Figure 1.  All variables are dimensionless and
are scaled from 0 to 1.  The system is an ideal gas inside a tube that has a finite wall thickness.
The problem is divided into two domains.  The gas domain, which considers only the gas inside
the tube, extends from r = 0 to r = 1 and z = 0 to z = 1.  The tube wall domain, which considers
only the tube wall thickness, extends from y = 0 to y = 1 and z = 0 to z = 1.  A planar geometry is
used for the tube wall domain.  This is valid in the limit of a very thin-walled tube relative to the
inner tube radius.  The two problems are linked together through the boundary conditions
between the gas and the tube wall interface; temperature and heat flux must be continuous across
the interface.

For the gas domain, the velocity field and the thermodynamic variables of temperature, T , and
density, r, are functions of spatial coordinates r and z, and of time, t.  The pressure, p, depends
only on z and t .  This approximation is valid when the ratio of the tube length to tube radius is
large.  For the case of the PTR, it is usually greater than 10.  For the tube wall domain, the
temperature is a function of y and t.

The normalized velocity field for the gas domain is composed of axial velocity, u, and radial
velocity, u .  The boundary conditions for u are at r = 0 and z = 0 ,  u = Uo ei2pt  where Uo = 1;
and at r = 0 and z = 1, u =UL ei2p(t + fU) where UL  is the normalized velocity amplitude.  The
imaginary number –1  is given by i.  The boundary conditions for temperature are at the
centerline (r = 0) the radial heat flux is zero; at the inner surface of the tube wall (r = 1, y = 0),
the temperature and heat flux are continuous between the gas and the wall; and at the outer
surface of the tube (y = 1) the radial heat flux is zero (adiabatic).
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Figure 1. Axisymetric system studied.  The gas domain extends from r = 0 to r = 1 and z = 0
to z = 1.  The tube wall domain extends from y = 0 to y = 1 and z = 0 to z = 1.



Table 1.  Definitions of scaling parameters

Name Definition Physical Meaning

e expansion parameter Uo
*t* L* ratio of displacement length to tube length

Va Valensi Number rw
*2

n*t*( ) ratio of tube inner radius to viscous diffusion length

Pr Prandtl Number n* ag
* ratio of viscous to thermal diffusion length scales

M Mach Number Uo
* g RTo

* ratio of velocity at r=0 and z=0 to speed of sound

Fo Fourier Number
at

*t* lt
*2 ratio of thermal diffusion length to tube wall thickness

UL velocity ratio Ul
* Uo

* ratio of velocity at r=0 and z=1 to velocity at r=0 and z=0

fU velocity phase angle phase angle at r=0 and z=1 relative to velocity at r=0 and z=0

The quasi-steady, periodic solution for temperature, pressure, density and velocity field is
analytic in r, z, t,  and has non-dimensional scaling parameters e, Va, Pr, M, Fo, UL and fU.
Table 1 defines the scaling parameters in terms of dimensional (starred) quantities, and describes
their physical meaning. U !*o   is the velocity at z = 0, U !*l   is the velocity at z = 1, T!*o   is the
reference temperature, l!*t   is the tube thickness, t* is the period of oscillation, rw* is the tube
inner radius, L* is the tube length, n* is the kinematic viscosity, a t* is the tube wall thermal
diffusivity, ag* is the gas thermal diffusivity, g is the heat capacity ratio and R is the ideal gas
constant.

RESULTS

The Effect of Heat Transfer on the Periodic Gas Temperature

Heat transfer affects enthalpy flow by changing the dynamic temperature amplitude and phase
angle of the gas.  The quasi-steady periodic solution to the basic state problem for the gas
temperature has the form

T1 = f 1 r, z[ ] + f 2 r[ ] Twei2pfTÊ 
Ë 

ˆ 
¯ e

i2p t (1)

where T1 is the oscillating temperature of the gas, Tw is the temperature at the interface between
the gas and the tube wall and fT  is the phase angle between the temperature at the interface and
Uo.  The temperatures and phase angle are dimensionless and range from 0 to 1.  Note that only
the real part of Eq. (1) has physical meaning.  The first term of Eq. (1) represents isothermal wall
conditions.  The second term is due to heat transfer coupling between the gas and the tube wall.
Heat transfer adds a lagging component that is strongest in the thermal diffusion layer.  Figures
2a and 2b plot Tw and fT as functions of Fo for the given parameters e, M, UL , fU and VaPr
(product of Va and Pr).  The parameter values are representative of an OPT.  For Fo << 1,
Tw Æ 0 which means that isothermal wall conditions are approached.  For Fo Æ ∞ adiabatic
conditions are approached.  Figure 2a shows that near isothermal conditions are reached when
Fo ≤ 10.

A typical operating point for an OPT is at VaPr ª 10 and Fo ª 10.  In this case, Fig. 2a shows that
Tw  is O(10–2).  The symbol O is used to mean "of order".  This is about one order less than the



dynamic temperature amplitude, which is O(10–1) relative to the reference temperature.  This
means that for  OPTs, the temperature  at the interface between the gas and  tube wall  is  close to
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Figure 2. The effect of heat transfer on the dynamic temperature amplitude Tw , and the phase
angle fT, at the tube wall inner surface (at r = 1).  Fo is the Fourier Number for the
tube wall (defined in Table 1).  Other parameters; UL = 0.3, fU =  – 0.25, e = 0.667,
M = 5.1 x 10–4.

being isothermal, i.e., heat transfer is present.  This is important because for one-dimensional
models, it is assumed that the conditions at the interface are adiabatic.  Figure 2b plots Fo vs. fT .
The plot shows that fT is less than zero which means that the temperature at the interface lags
the reference velocity at z = 0.

The BPT which operates at UL = 0 and VaPr ª 1 ideally operates at the isothermal limit Tw Æ 0.
In this case, heat transfer between the gas and tube wall produce the proper phase shift between
velocity and temperature for enthalpy to flow.  Calculations show that fT  remains relatively
constant at fT ª – 0.25 even for large Fo.  However, since proper phasing takes place only in the
diffusion layer, maximum efficiency is obtained when thermal diffusion fills the entire tube, i.e.,
VaPr ~O(1).  Stack arrangements are then necessary to increase the total enthalpy flow, such as
used in acoustic refrigerators.

Figure 3 shows an example of how heat transfer affects radial temperature distribution and phase
angle relative to an isothermal wall.  The parameter values are the same as those in Fig. 2 with
VaPr = 10 and Fo = 100.  Three times are shown: t = 0.2, t = 0.35 and t = 0.5.  The plot shows
how the oscillating wall temperature modifies the temperature primarily in the thermal diffusion
layer (r > 0.5).  At the core (r < 0.5) the temperatures are similar, both in amplitude and phase.
At r = 0, the temperature amplitude and phase are close to one-dimensional predictions.  For
one-dimensional models, the temperature is not a function of r.  Figure 3 clearly shows that when
diffusion is considered, the temperature profiles are very different from idealized one-
dimensional models.
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Figure. 3. The effect of heat transfer on the oscillating gas temperature as a function of radial
distance for Fo = 100 and for an isothermal tube wall; U L = 0.3, fU = –0.25,
e = 0.667, M = 5.1 x 10–4, VaPr = 10.
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Figure 4. Normalize enthalpy flow vs. z  for an OPT configuration: e = 0.55, VaPr = 10,
UL = 0.3, fU = –0.25 and M = 2.0 x 10–4; The reference enthalpy flow is 58.7W.

The Effect of Heat Transfer on Enthalpy Flow

Enthalpy flow is calculated from the quantity

H = 2p uoT1 r( ) dr
0

1

Ú
Ê 

Ë 
Á 

ˆ 

¯ 
˜ dh

0

z
Ú (2)

where the overbar means time-averaged.  The reference boundary condition on <H> at z = 0 is
<H> = 0.  The heat capacity and density are not explicit in Eq. (2) because the variables are
dimensionless, i.e., the dimensionless heat capacity and dimensionless density are both 1.

Figure 4 plots the normalized enthalpy flow vs. z for an OPT configured system.  The strict
interpretation of Figure 4 is that it shows the enthalpy flow at a time immediately after a PTR is
started from isothermal conditions.  Figure 4 shows that the effect of heat transfer is to steepen
the enthalpy flow gradient; enthalpy flow decreases as z increases.  This means that enthalpy is
continuously rejected to the wall.  This reduces the amount of enthalpy that can be rejected out of
the system at the hot heat exchanger, thereby reducing refrigeration.  Isothermal wall conditions
are effectively attained for Fo ≤ 10.  OPTs typically operate at Fo ª 10.  Figure 4 shows that
when there is heat transfer, enthalpy flow near the hot heat exchanger (z = 1) decreases when
compared to the more adiabatic case of Fo >>> 1.

Enthalpy Flux Fields

Figures 5a and 5b show an OPT enthalpy flux field for both an isothermal tube wall and for
Fo = 1000, respectively.  The scaling parameters are the same as in Fig. 4 for VaPr = 10.  For the
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Figure 6. Enthalpy flux field for an OPT: e = 0.55, VaPr = 1.0, U L=1, f U = –0.25,
M = 5.1 x 10–4.  For Fo = 1000, fT = –0.143, Tw = 0.0086.

isothermal case the flux field is unidirectional.  For the case in which Fo = 1000, the flux field
reverses itself in the thermal diffusion layer near z = 0.  Near z = 1, however, the flux field has a
larger positive flow over the isothermal case, resulting in greater enthalpy flow near the warm
end as previously indicated in Fig. 4.

Figure 6 shows an OPT configuration in which VaPr = 1 and UL = 1.  These parameters illustrate
a case in which the velocity amplitude at the tube ends are equal, and diffusion fills the entire
tube.  For the isothermal case in Fig. 6a there is a reversal of enthalpy flux in the vicinity of
z = 1.  This means that the highest temperature will be located at a position where z < 1.  For the
case of Fo = 1000, the entire enthalpy field flows in one direction.

An interesting case is a comparison between isothermal and near adiabatic conditions for a BPT.
Figure 7 shows this comparison.  Isothermal conditions in Fig. 7a are seen to produce
unidirectional enthalpy flow.  However, for adiabatic conditions in which there is little heat
transfer, there is significant enthalpy streaming in the diffusion layer that is in a direction
opposite to the core flow.  For the BPT then, adiabatic conditions can be detrimental.

Steady Secondary Mass Flux

The steady secondary mass flux due to the Reynolds stresses is a quadratic quantity and therefore
nonvanishing when time-averaged.  Steady mass flow is strongly dependent on the velocity
amplitude, velocity gradient, and on the velocity phase angle between the tube ends.  It is less
dependent on heat transfer with the tube wall.  Figure 8 plots the steady z-component of mass
flux as a function of r at z = 0 for a BPT configuration at different Va.  The oscillating end of the
tube is located at z = 0 and the closed end is located at z = 1.  The Reynolds stresses, which are
strongest in the momentum diffusion layer, are the driving forces6.  By mass conservation for a
closed system the time-averaged mass flow at any z location must be zero.  This requires that the
gas in the core move in a direction counterflow to the gas in the diffusion layer.
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Figure. 5 Enthalpy flux field for an OPT.  The enthalpy flux in the thermal diffusion layer is
seen to reverse for Fo = 1000.  System parameters: e = 0.55, VaPr = 10, UL = 0.3,
fU = –0.25, M = 2.0 x 10–4.  For Fo = 1000, fT = –0.187, Tw = 0.049.



Figure 8 shows the axial component of velocity as a function of radial distance for a BPT
configured system for Va = 10, 20, 40 and 80.  For Va < 35,  the gas in the diffusion  layer  flows
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Figure. 7 Enthalpy flux field for an BPT configuration: e = 0.55, VaPr = 10, U L = 0,
M = 5.1 x 10–4.  For Fo = 1000, fT = –0.262 and Tw = 0.021.
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Figure 8. Normalized mass flux distribution for a BPT: e = 0.10, M = 7.7 x 10–4.

towards the oscillating end while the gas in the core flows towards the closed end.  As Va is
increased, a double "boundary layer" is produced.  In the first layer very near the wall the gas
continues to flow towards the oscillating end.  The gas in the core, however, has switched
direction and now it too flows towards the oscillating end.  Between the core and the first viscous
layer is a second viscous layer – a transition layer – which flows towards the closed end.  This
phenomena has also been predicted for incompressible oscillating flow systems with slightly
varying tube diameters7.

Figure 9 shows the steady velocity field for an flow system configured as an OPT for Va = 80,
UL = 0.3 and fU = – 0.25.  This is an example of the complexity of the steady flow patterns
within a pulse tube.  The radial velocity component is very apparent and is a result of the
Reynolds stresses producing a body force on the fluid.   We have experimentally confirmed the
direction of the core flow for both an OPT and BPT configured system using smoke-wire flow
visualization6 for values of Va > 40.

The major consequences of mass streaming for the PTR are the losses associated with a direct
enthalpy convection between the cold and warm ends.  For axial temperature gradients of O(1),
convected enthalpy flow is approximately one order of magnitude smaller than the enthalpy flow
used to do refrigeration as calculated from a one-dimensional model.
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Figure 9. Normalized velocity field for an OPT with isothermal tube wall conditions: e = 0.15,
Va = 80, Pr = 0.7, UL = 0.3 and fU = –0.25, M = 5.7 x 10–4.



SUMMARY

Thermal and momentum diffusion give rise to steady secondary flows that can have important
implications for the pulse tube refrigerator.  We have developed a two-dimensional mathematical
model which can be used to understand steady enthalpy and momentum flows.  Included is the
effect of heat transfer between the gas and tube wall.  Some insightful results show that:

• Heat transfer between the gas and the tube wall produces axial enthalpy flow gradients.
This is a possible loss mechanism, since the enthalpy flow available to do refrigeration is
rejected to the tube wall and not to the hot heat exchanger.

• For real PT systems heat transfer is not negligible;

• Convection of enthalpy due to mass streaming is a loss mechanism.  It is approximately one
order of magnitude smaller than the enthalpy flow used to do refrigeration;

• The dimensionless parameters of e, Va, Pr,, M, UL, fU and Fo allow for an extended range
of scaling that can include modeling of heat exchangers and regenerators.

The model is being further developed to optimize PTR performance through an entropy analysis
that includes axial temperature gradients and viscous dissipation for geometries in which
Va << 1. Steady mass streaming of enthalpy and the corresponding losses are also being
examined through velocity amplitude and velocity phase angle dependency, and system
geometry.
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APPENDIX

Summary of Mathematical Formulation

A series expansion solution in the small parameter e allows linearization of the non-dimensional
conservation equations.  The expansion parameter is equal to the inverse of the Strouhal Number
which is a frequency parameter.  The resulting set of coupled linear partial differential equations
are derived in the limit of lubrication theory.  They are presented here as the non-dimensional
equivalent to the equations first examined comprehensively by Rott1.  Periodic solutions in the
limit of negligible axial temperature gradients are sought for the basic state problem.  Axial
velocity boundary conditions are parametric in amplitude and phase angle.  The resulting basic
state solution is extended to the time-averaged O(e) problem which describes the steady
secondary motion of interest.  The steady momentum flow is found to be driven by the Reynolds
stresses in the viscous layer near the tube wall.  The steady enthalpy flow is generated by the
conditions on axial velocity boundary conditions and is influenced by thermal diffusion whose
temperature amplitude and temperature phase angle are intimately connected with the tube wall
Fourier Number, Fo.



Basic State Problem

The axisymetric system under examination is shown in Figure 1 of the main paper.  The
normalized velocity field is composed of scalars axial velocity, u, and radial velocity, u.  The
velocity field and the thermodynamic variables of temperature, T, and density, r are functions of
spatial coordinates r and z, and of time, t.  The thermodynamic pressure, p, depends only on z
and t, in accordance with lubrication theory.

The conservation equations for mass, momentum, energy and the equation of state for an ideal
gas are scaled to non-dimensional form, from which the expansion parameter e is identified.  The
series expansion solution is of the form c (r, z, t) = [co + e c1(r, z,) + e 2c2(r, z,) + O(e 3)] ei2pt
where t is the dimensionless time bounded between 0 and 1, and c represents the dependent
variables u(r, z, t), u(r, z, t), T(r, z, t), r(r, z, t), and p(z, t).  The symbol O  means "of order".  The
terms for the dimensionless quantities po, ro and To are equal to one while uo and uo are the basic
state velocities to be solved.  We use the notation c,h to mean the partial derivative of c with
respect to h.  The linearized equations for the basic state problem are:

uo,t = -
e p1,z

g M2 Str
+

1
Va

ruo, r( ),r
r

(A1)

T1,t =
g -1

g
p1,t +

1
PrVa

rT1,r( ),r
r

(A2)

0 = r1,t +
uor( ),r

r
+ uo, z (A3)

p1 = r1 + T1  . (A4)

The non-dimensional parameters written in terms of dimensional (starred) quantities are

e =
Uo

*t*

L* ; Va =
rw
* 2

no
* t* ; Pr =

no
*

ag
*  ; M =

Uo
*

g RTo
*

where e is the expansion parameter and equal to the inverse of the Strouhal Number , Str; Va is
the Valensi Number, Pr is the Prandtl Number, M is the Mach Number, U !*o   is the reference
velocity, and t* is the period; L* is the tube length and rw* is the inner radius of the tube; no* is
the kinematic viscosity, ag* is the gas thermal diffusivity and T!*o   is the reference temperature; g
is the heat capacity ratio, and R is the ideal gas constant.

The velocity boundary conditions are normalized with respect to U!*o   which is the velocity at
r = z = 0.  They are

r = 0, uo,r = 0, uo = 0 (A5)
r = 1, uo = uo = 0
r = 0 and z = 0 , uo = Uo = 1 
r = 0 and z = 1 , uo = UL ei2pfU

where UL is the dynamic velocity amplitude ratio at z = 1 (see Table 1).  The conditions on
velocity at the tube ends allow the velocity amplitude UL and the velocity phase angle, fU, to be
independent parameters.  The temperature boundary conditions are



r = 0, T1,r = 0 (A6)
r = 1, T1 =Tw ei2pfT
where Tw  is the temperature amplitude, fT is the phase angle between T1  and the reference
velocity Uo .

Periodic diffusion heat transfer applies over the tube wall domain while temperature and heat
flux are continuous between the gas and tube wall.  For the limit in which the tube wall
thickness, lt *, is much less than the tube inner radius, rw*, planar geometry can be used for the
tube wall.  In this case, the unsteady thermal diffusion equation for the tube wall domain is

q1,t = Foq1,yy (A7)

where q1 is the dynamic temperature amplitude for the tube wall.  The Fourier Number, Fo, is
defined as ratio of the square of the thermal penetration length to the tube wall thickness:

Fo =
at

*t *

lt
*2 (A8)

where at* is the thermal diffusivity of the tube wall and is equal to the thermal conductivity
divided by the product of density and heat capacity.  The boundary conditions are that
temperature be continuous at the inner surface of the tube wall (interface between the gas and the
tube) and that adiabatic conditions apply at the outer surface:

y = 0, q1 =T1(at r = 1) =Tw ei2pfT (A9)
y = 1, q1,y = 0 .

The additional unknown of fT is found from the condition that heat flux be continuous across the
interface between the gas and the tube:

at r = 1, y = 0, z = 0; {ktq1,y }at y=0 = {kgT1,r }at r=1, z=0 (A10)

where kt and kg are the thermoconductivities of the tube wall and gas, respectively.  A numerical
search for the value of fT  and Tw that satisfies Eq. (A10) is required.  Equations (A1) to (A4),
(A7) and (A10) along with the boundary conditions comprise the basic state problem for the
unknowns uo, uo, r1, T1, p1, q1, Tw  and fT.  The equation set is solved yielding a complicated
solution contorted with analytic functions in r, z, t, and with dimensionless scaling parameters e,
Va, Pr, M, Fo, UL and fU.  In general, the effect of decreasing heat transfer (increasing Fo,
Fo > 1) from the isothermal wall case (Fo << 1) is to add a lagging component to uo, r1, T1, p1,
while uo  remains unaffected.

O(e) Steady Secondary Flow

The steady secondary momentum streaming problem is obtained from the O(e) time-averaged
momentum equation:

uouor( ),r
r

+ uo
2Ê 

Ë 
ˆ 
¯ , z

= -
e p2,z

g M2 Str
+

1
Va

ru1,r( ),r
r

(A11)

where the overbars represent time-averaged quantities.  The boundary conditions are

at r = 0, !̀!u 1,r = 0 (A12)



at r = 1, !̀!u1 = 0 

The terms on the left-hand-side of Eq. (A11) are the steady Reynolds stresses.  Mass flow is
constrained within the tube so that the axial net mass flow averaged over one cycle at any axial
location must be zero:

0 = u1 r dr
0

1

Ú + r1uo r dr
0

1

Ú . (A13)

Equations (A11) and (A13) along with the boundary conditions Eq. (A12) are used to find u1 and
the pressure field p2.  The quantity u1 by itself is not of physical significance; it represents only
the streaming mass flux due to the Reynolds stresses.  The observed steady mass flux scalars – a
combination of the Reynolds stresses and the counterflow pressure gradient – are defined as
````(rsus)  and ````(rsus)  and are related through the O(e) steady mass conservation equation:

rsus( ) ≡ u1 + r1uo( ) (A14)

rsus( ) ≡ u1 + r1uo( ) (A15)

0 = u1 ,z + r1uo( ), z +
u1r( ), r

r
+

r1uor( ) ,r
r

. (A16)

The steady O(e) axial enthalpy flux is found by integrating the z-component of the O(e) energy
equation

h2,z r, z( ) = uoT1( ),z (A17)

with the boundary condition at z = 0, ̀!!h2 = 0. 

Equations (A14) to (A16)  are solved for the steady mass flux field while Eq. (A17) is solved for
the axial enthalpy flux.  The complete solution to this problem is given in detail elsewhere6.


